This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
QingsongWen
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The rise of large language models (LLMs) offers new opportunities for automatic error detection in education, particularly for math word problems (MWPs). While prior studies demonstrate the promise of LLMs as error detectors, they overlook the presence of multiple valid solutions for a single MWP. Our preliminary analysis reveals a significant performance gap between conventional and alternative solutions in MWPs, a phenomenon we term conformity bias in this work. To mitigate this bias, we introduce the Ask-Before-Detect (AskBD) framework, which generates adaptive reference solutions using LLMs to enhance error detection. Experiments on 200 examples of GSM8K show that AskBD effectively mitigates bias and improves performance, especially when combined with reasoning-enhancing techniques like chain-of-thought prompting.
Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing ~200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, user study questionnaires for evaluation, and other related materials have been open-sourced here.
Mathematical error detection in educational settings presents a significant challenge for Multimodal Large Language Models (MLLMs), requiring a sophisticated understanding of both visual and textual mathematical content along with complex reasoning capabilities. Though effective in mathematical problem-solving, MLLMs often struggle with the nuanced task of **identifying and categorizing student errors in multimodal mathematical contexts**. Therefore, we introduce **MathAgent, a novel Mixture-of-Math-Agent framework** specifically designed to address these challenges. Our approach decomposes error detection into three phases with specialized agents: an image-text consistency validator, a visual semantic interpreter, and an integrative error analyzer. This architecture enables more accurate processing of multimodal mathematical content by explicitly modeling the relationships between multimodal problems and student solution steps. We evaluate MathAgent on real-world educational data, demonstrating approximately 5% higher accuracy in error step identification and 3% improvement in error categorization compared to baseline models. Furthermore, MathAgent has been successfully deployed in an educational platform serving over one million K-12 students, achieving nearly 90% student satisfaction while generating significant cost savings by reducing manual error detection.
The advancements of Large Language Models (LLMs) have spurred a growing interest in their application to Named Entity Recognition (NER) methods. However, existing datasets are primarily designed for traditional machine learning methods and are inadequate for LLM-based methods, in terms of corpus selection and overall dataset design logic. Moreover, the prevalent fixed and relatively coarse-grained entity categorization in existing datasets fails to adequately assess the superior generalization and contextual understanding capabilities of LLM-based methods, thereby hindering a comprehensive demonstration of their broad application prospects. To address these limitations, we propose DynamicNER, the first NER dataset designed for LLM-based methods with dynamic categorization, introducing various entity types and entity type lists for the same entity in different context, leveraging the generalization of LLM-based NER better. The dataset is also multilingual and multi-granular, covering 8 languages and 155 entity types, with corpora spanning a diverse range of domains. Furthermore, we introduce CascadeNER, a novel NER method based on a two-stage strategy and lightweight LLMs, achieving higher accuracy on fine-grained tasks while requiring fewer computational resources. Experiments show that DynamicNER serves as a robust and effective benchmark for LLM-based NER methods. Furthermore, we also conduct analysis for traditional methods and LLM-based methods on our dataset. Our code and dataset are openly available at https://github.com/Astarojth/DynamicNER.
While recent efforts have begun integrating large language models (LLMs) into English education, they often rely on traditional approaches to learning tasks without fully embracing educational methodologies, thus lacking adaptability to language learning. To address this gap, we argue that **LLMs have the potential to serve as effective tutors in English Education**. Specifically, LLMs can play three critical roles: (1) as data enhancers, improving the creation of learning materials or serving as student simulations; (2) as task predictors, serving as learner assessment or optimizing learning pathway; and (3) as agents, enabling personalized and inclusive education. We encourage interdisciplinary research to explore these roles, fostering innovation while addressing challenges and risks, ultimately advancing English Education through the thoughtful integration of LLMs.
Education materials for K-12 students often consist of multiple modalities, such as text and images, posing challenges for models to fully understand nuanced information in these materials. In this paper, we propose a unified language and vision assistant UniEDU designed for various educational applications, including knowledge recommendation, knowledge tracing, time cost prediction, and user answer prediction, all within a single model. Unlike conventional task-specific models, UniEDU offers a unified solution that excels across multiple educational tasks while maintaining strong generalization capabilities. Its adaptability makes it well-suited for real-world deployment in diverse learning environments. Furthermore, UniEDU is optimized for industry-scale deployment by significantly reducing computational overhead—achieving approximately a 300% increase in efficiency—while maintaining competitive performance with minimal degradation compared to fully fine-tuned models. This work represents a significant step toward creating versatile AI systems tailored to the evolving demands of education.
Large language models (LLMs) have fueled significant progress in intelligent Multi-agent Systems (MAS), with expanding academic and industrial applications. However, safeguarding these systems from malicious queries receives relatively little attention, while methods for single-agent safety are challenging to transfer. In this paper, we explore MAS safety from a topological perspective, aiming at identifying structural properties that enhance security. To this end, we propose NetSafe framework, unifying diverse MAS workflows via iterative RelCom interactions to enable generalized analysis. We identify several critical phenomena for MAS under attacks (misinformation, bias, and harmful content), termed as Agent Hallucination, Aggregation Safety and Security Bottleneck. Furthermore, we verify that highly connected and larger systems are more vulnerable to adversarial spread, with task performance in a Star Graph Topology decreasing by 29.7%. In conclusion, our work introduces a new perspective on MAS safety and discovers unreported phenomena, offering insights and posing challenges to the community.
Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with mathematical reasoning tasks is becoming increasingly significant. This survey provides **the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs)**. We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs, with a focus on multimodal settings. We categorize the field into three dimensions: benchmarks, methodologies, and challenges. In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies. Finally, we identify five major challenges hindering the realization of AGI in this domain, offering insights into the future direction for enhancing multimodal reasoning capabilities. This survey serves as a critical resource for the research community in advancing the capabilities of LLMs to tackle complex multimodal reasoning tasks.
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention. However, even the most advanced LLMs face challenges such as hallucinations and real-time updating of their knowledge. Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG). However, two key issues constrained the development of RAG. First, there is a growing lack of comprehensive and fair comparisons between novel RAG algorithms. Second, open-source tools such as LlamaIndex and LangChain employ high-level abstractions, which results in a lack of transparency and limits the ability to develop novel algorithms and evaluation metrics. To close this gap, we introduce RAGLAB, a modular and research-oriented open-source library. RAGLAB reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms. Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks. With RAGLAB, researchers can efficiently compare the performance of various algorithms and develop novel algorithms.