Qifeng Bai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ReasonMed: A 370K Multi-Agent Generated Dataset for Advancing Medical Reasoning
Yu Sun | Xingyu Qian | Weiwen Xu | Hao Zhang | Chenghao Xiao | Long Li | Deli Zhao | Wenbing Huang | Tingyang Xu | Qifeng Bai | Yu Rong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Reasoning-based large language models have excelled in mathematics and programming, yet their potential in knowledge-intensive medical question answering remains underexplored and insufficiently validated in clinical contexts.To bridge this gap, we introduce ReasonMed, the largest medical reasoning dataset to date, comprising 370k high-quality examples distilled from 1.75 million initial reasoning paths generated by complementary LLMs and curated through a cost-efficient easy-medium-difficult (EMD) pipeline.ReasonMed is built through a multi-agent generation, verification, and refinement process, in which an Error Refiner improves reasoning paths by correcting error-prone steps identified by a verifier.Using ReasonMed, we investigate effective strategies for training medical reasoning models and find that integrating detailed CoT reasoning with concise answer summaries yields the most robust fine-tuning results.Models trained on ReasonMed set a new benchmark: ReasonMed-7B surpasses the prior best sub-10B models by 4.17% and even exceeds LLaMA3.1-70B on PubMedQA by 4.60%. When scaled to ReasonMed-14B, it remains highly competitive, underscoring consistent scaling potential.The codes and datasets are available at https://github.com/YuSun-Work/ReasonMed.