Qianou Ma


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SPHERE: An Evaluation Card for Human-AI Systems
Dora Zhao | Qianou Ma | Xinran Zhao | Chenglei Si | Chenyang Yang | Ryan Louie | Ehud Reiter | Diyi Yang | Tongshuang Wu
Findings of the Association for Computational Linguistics: ACL 2025

In the era of Large Language Models (LLMs), establishing effective evaluation methods and standards for diverse human-AI interaction systems is increasingly challenging. To encourage more transparent documentation and facilitate discussion on human-AI system evaluation design options, we present an evaluation card SPHERE, which encompasses five key dimensions: 1) What is being evaluated?; 2) How is the evaluation conducted?; 3) Who is participating in the evaluation?; 4) When is evaluation conducted?; 5) How is evaluation validated? We conduct a review of 39 human-AI systems using SPHERE, outlining current evaluation practices and areas for improvement. We provide three recommendations for improving the validity and rigor of evaluation practices.