This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
QianPan
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We present a synthetic data generation tool integrated into EvalAssist. EvalAssist is a web-based application designed to assist human-centered evaluation of language model outputs by allowing users to refine LLM-as-a-Judge evaluation criteria. The synthetic data generation tool in EvalAssist is tailored for evaluation contexts and informed by findings from user studies with AI practitioners. Participants identified key pain points in current workflows including circularity risks (where models are judged by criteria derived by themselves), compounded bias (amplification of biases across multiple stages of a pipeline), and poor support for edge cases, and expressed a strong preference for real-world grounding and fine-grained control. In response, our tool supports flexible prompting, RAG-based grounding, persona diversity, and iterative generation workflows. We also incorporate features for quality assurance and edge case discovery.
The deployment of language models in real-world applications exposes users to various risks, including hallucinations and harmful or unethical content. These challenges highlight the urgent need for robust safeguards to ensure safe and responsible AI. To address this, we introduce Granite Guardian, a suite of advanced models designed to detect and mitigate risks associated with prompts and responses, enabling seamless integration with any large language model (LLM). Unlike existing open-source solutions, our Granite Guardian models provide comprehensive coverage across a wide range of risk dimensions, including social bias, profanity, violence, sexual content, unethical behavior, jailbreaking, and hallucination-related issues such as context relevance, groundedness, and answer accuracy in retrieval-augmented generation (RAG) scenarios. Trained on a unique dataset combining diverse human annotations and synthetic data, Granite Guardian excels in identifying risks often overlooked by traditional detection systems, particularly jailbreak attempts and RAG-specific challenges. https://github.com/ibm-granite/granite-guardian
Traditional reference-based metrics, such as BLEU and ROUGE, are less effective for assessing outputs from Large Language Models (LLMs) that produce highly creative or superior-quality text, or in situations where reference outputs are unavailable. While human evaluation remains an option, it is costly and difficult to scale. Recent work using LLMs as evaluators (LLM-as-a-judge) is promising, but trust and reliability remain a significant concern. Integrating human input is crucial to ensure criteria used to evaluate are aligned with the human’s intent, and evaluations are robust and consistent. This paper presents a user study of a design exploration called EvaluLLM, that enables users to leverage LLMs as customizable judges, promoting human involvement to balance trust and cost-saving potential with caution. Through interviews with eight domain experts, we identified the need for assistance in developing effective evaluation criteria aligning the LLM-as-a-judge with practitioners’ preferences and expectations. We offer findings and design recommendations to optimize human-assisted LLM-as-judge systems.