This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
PurificaçãoSilvano
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We present polyNarrative, a new multilingual dataset of news articles, annotated for narratives. Narratives are overt or implicit claims, recurring across articles and languages, promoting a specific interpretation or viewpoint on an ongoing topic, often propagating mis/disinformation. We developed two-level taxonomies with coarse- and fine-grained narrative labels for two domains: (i) climate change and (ii) the military conflict between Ukraine and Russia. We collected news articles in four languages (Bulgarian, English, Portuguese, and Russian) related to the two domains and manually annotated them at the paragraph level. We make the dataset publicly available, along with experimental results of several strong baselines that assign narrative labels to news articles at the paragraph or the document level. We believe that this dataset will foster research in narrative detection and enable new research directions towards more multi-domain and highly granular narrative related tasks.
We introduce a novel multilingual and hierarchical corpus annotated for entity framing and role portrayal in news articles. The dataset uses a unique taxonomy inspired by storytelling elements, comprising 22 fine-grained roles, or archetypes, nested within three main categories: protagonist, antagonist, and innocent. Each archetype is carefully defined, capturing nuanced portrayals of entities such as guardian, martyr, and underdog for protagonists; tyrant, deceiver, and bigot for antagonists; and victim, scapegoat, and exploited for innocents. The dataset includes 1,378 recent news articles in five languages (Bulgarian, English, Hindi, European Portuguese, and Russian) focusing on two critical domains of global significance: the Ukraine-Russia War and Climate Change. Over 5,800 entity mentions have been annotated with role labels. This dataset serves as a valuable resource for research into role portrayal and has broader implications for news analysis. We describe the characteristics of the dataset and the annotation process, and we report evaluation results on fine-tuned state-of-the-art multilingual transformers and hierarchical zero-shot learning using LLMs at the level of a document, a paragraph, and a sentence.
We present NarratEX, a dataset designed for the task of explaining the choice of the Dominant Narrative in a news article, and intended to support the research community in addressing challenges such as discourse polarization and propaganda detection. Our dataset comprises 1,056 news articles in four languages, Bulgarian, English, Portuguese, and Russian, covering two globally significant topics: the Ukraine-Russia War (URW) and Climate Change (CC). Each article is manually annotated with a dominant narrative and sub-narrative labels, and an explanation justifying the chosen labels. We describe the dataset, the process of its creation, and its characteristics. We present experiments with two new proposed tasks: Explaining Dominant Narrative based on Text, which involves writing a concise paragraph to justify the choice of the dominant narrative and sub-narrative of a given text, and Inferring Dominant Narrative from Explanation, which involves predicting the appropriate dominant narrative category based on an explanatory text. The proposed dataset is a valuable resource for advancing research on detecting and mitigating manipulative content, while promoting a deeper understanding of how narratives influence public discourse.
This paper describes some of the ongoing work within the ISO preliminary work item PWI 254617-17, ‘Interlinking of annotations’. This PWI investigates the possibilities and problems of combining annotations made with different annotation schemes. using the ‘interlinking’ approach (Bunt, 2024) applied to different parts of the multi-part standard ISO 24617, ‘Semantic annotation framework’. This paper focuses on the combination of ISO-TimeML and QuantML at the level of abstract syntax. A new version is defined for the ISO-TimeML abstract syntax specification and how it relates to the concrete (XML-based) syntax as a basis for this combination. As a side-effect, some issues in the use of ISO-TimeML come to light that could be relevant for a possible future second edition of this standard.
The definition of rigorous and well-structured annotation schemes is a key element in the advancement of Natural Language Processing (NLP). This paper aims to compare the performance of a general-purpose annotation scheme — Text2Story, based on the ISO 24617-1 standard — with that of a domain-specific scheme — i2b2 — in the context of clinical narrative annotation; and to assess the feasibility of harmonizing ISO 24617-1, originally designed for general-domain applications, with a specialized extension tailored to the medical domain. Based on the results of this comparative analysis, we present Med2Story, a medical-specific extension of ISO 24617-1 developed to address the particularities of clinical text annotation.
We present an annotation scheme designed to capture information related to the maintenance or change in the price of some goods (fuels, water, and vehicles) in news articles in Portuguese. The methodology we used involved adapting an existing annotation scheme, the Text2Story scheme (Silvano et al., 2021; Leal et al., 2022), which is based on different parts of ISO 24617 to capture the essential information for this project. Adaptations were needed to accommodate specific information, namely, information related to quantitative data and comparative relations that are abundant in this type of news. In this paper, we provide an overview of the annotation scheme, highlighting attributes and values of the entity and link structures specifically designed to capture financial information, as well as some problems we had to overcome in the process of building it and the rationale of some decisions behind its overall architecture.
The development of a robust annotation scheme and corresponding guidelines is crucial for producing annotated datasets that advance both linguistic and computational research. This paper presents a case study that outlines a methodology for designing an annotation scheme and its guidelines, specifically aimed at representing morphosyntactic and semantic information regarding temporal features, as well as medical information in medical reports written in Portuguese. We detail a multi-step process that includes reviewing existing frameworks, conducting an annotation experiment to determine the optimal approach, and designing a model based on these findings. We validated the approach through a pilot experiment where we assessed the reliability and applicability of the annotation scheme and guidelines. In this experiment, two annotators independently annotated a patient’s medical report consisting of six documents using the proposed model, while a curator established the ground truth. The analysis of inter-annotator agreement and the annotation results enabled the identification of sources of human variation and provided insights for further refinement of the annotation scheme and guidelines.
We introduce SemEval-2025 Task 10 on Multilingual Characterization and Extraction of Narratives from Online News, which focuses on the identification and analysis of narratives in online news media. The task is structured into three subtasks: (1) Entity Framing, to identify the roles that relevant entities play within narratives, (2) Narrative Classification, to assign documents fine-grained narratives according to a given, topic-specific taxonomy of narrative labels, and (3) Narrative Extraction, to provide a justification for the dominant narrative of the document. To this end, we analyze news articles across two critical domains, Ukraine-Russia War and Climate Change, in five languages: Bulgarian, English, Hindi, Portuguese, and Russian. This task introduces a novel multilingual and multifaceted framework for studying how online news media construct and disseminate manipulative narratives. By addressing these challenges, our work contributes to the broader effort of detecting, understanding, and mitigating the spread of propaganda and disinformation. The task attracted a lot of interest: 310 teams registered, with 66 submitting official results on the test set.
The main objective of this study is to contribute to multilingual discourse research by employing ISO-24617 Part 8 (Semantic Relations in Discourse, Core Annotation Schema – DR-core) for annotating discourse relations. Centering around a parallel discourse relations corpus that includes English, Polish, and European Portuguese, we initiate one of the few ISO-based comparative analyses through a multilingual corpus that aligns discourse relations across these languages. In this paper, we discuss the project’s contributions, including the annotated corpus, research findings, and statistics related to the use of discourse relations. The paper further discusses the challenges encountered in complying with the ISO standard, such as defining the scope of arguments and annotating specific relation types like Expansion. Our findings highlight the necessity for clearer definitions of certain discourse relations and more precise guidelines for argument spans, especially concerning the inclusion of connectives. Additionally, the study underscores the importance of ongoing collaborative efforts to broaden the inclusion of languages and more comprehensive datasets, with the objective of widening the reach of ISO-guided multilingual discourse research.
Understanding the relation between the meanings of words is an important part of comprehending natural language. Prior work has either focused on analysing lexical semantic relations in word embeddings or probing pretrained language models (PLMs), with some exceptions. Given the rarity of highly multilingual benchmarks, it is unclear to what extent PLMs capture relational knowledge and are able to transfer it across languages. To start addressing this question, we propose MultiLexBATS, a multilingual parallel dataset of lexical semantic relations adapted from BATS in 15 languages including low-resource languages, such as Bambara, Lithuanian, and Albanian. As experiment on cross-lingual transfer of relational knowledge, we test the PLMs’ ability to (1) capture analogies across languages, and (2) predict translation targets. We find considerable differences across relation types and languages with a clear preference for hypernymy and antonymy as well as romance languages.
Reasoning about spatial information is fundamental in natural language to fully understand relationships between entities and/or between events. However, the complexity underlying such reasoning makes it hard to represent formally spatial information. Despite the growing interest on this topic, and the development of some frameworks, many problems persist regarding, for instance, the coverage of a wide variety of linguistic constructions and of languages. In this paper, we present a proposal of integrating ISO-Space into a ISO-based multilayer annotation scheme, designed to annotate news in European Portuguese. This scheme already enables annotation at three levels, temporal, referential and thematic, by combining postulates from ISO 24617-1, 4 and 9. Since the corpus comprises news articles, and spatial information is relevant within this kind of texts, a more detailed account of space was required. The main objective of this paper is to discuss the process of integrating ISO-Space with the existing layers of our annotation scheme, assessing the compatibility of the aforementioned parts of ISO 24617, and the problems posed by the harmonization of the four layers and by some specifications of ISO-Space.
Discourse markers carry information about the discourse structure and organization, and also signal local dependencies or epistemological stance of speaker. They provide instructions on how to interpret the discourse, and their study is paramount to understand the mechanism underlying discourse organization. This paper presents a new language resource, an ISO-based annotated multilingual parallel corpus for discourse markers. The corpus comprises nine languages, Bulgarian, Lithuanian, German, European Portuguese, Hebrew, Romanian, Polish, and Macedonian, with English as a pivot language. In order to represent the meaning of the discourse markers, we propose an annotation scheme of discourse relations from ISO 24617-8 with a plug-in to ISO 24617-2 for communicative functions. We describe an experiment in which we applied the annotation scheme to assess its validity. The results reveal that, although some extensions are required to cover all the multilingual data, it provides a proper representation of discourse markers value. Additionally, we report some relevant contrastive phenomena concerning discourse markers interpretation and role in discourse. This first step will allow us to develop deep learning methods to identify and extract discourse relations and communicative functions, and to represent that information as Linguistic Linked Open Data (LLOD).
In this paper, we describe the process of developing a multilayer semantic annotation scheme designed for extracting information from a European Portuguese corpus of news articles, at three levels, temporal, referential and semantic role labelling. The novelty of this scheme is the harmonization of parts 1, 4 and 9 of the ISO 24617 Language resource management - Semantic annotation framework. This annotation framework includes a set of entity structures (participants, events, times) and a set of links (temporal, aspectual, subordination, objectal and semantic roles) with several tags and attribute values that ensure adequate semantic and visual representations of news stories.