Pum-Mo Ryu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Proceedings of the 29th International Conference on Computational Linguistics
Nicoletta Calzolari | Chu-Ren Huang | Hansaem Kim | James Pustejovsky | Leo Wanner | Key-Sun Choi | Pum-Mo Ryu | Hsin-Hsi Chen | Lucia Donatelli | Heng Ji | Sadao Kurohashi | Patrizia Paggio | Nianwen Xue | Seokhwan Kim | Younggyun Hahm | Zhong He | Tony Kyungil Lee | Enrico Santus | Francis Bond | Seung-Hoon Na
Proceedings of the 29th International Conference on Computational Linguistics

2014

pdf bib
Sentential Paraphrase Generation for Agglutinative Languages Using SVM with a String Kernel
Hancheol Park | Gahgene Gweon | Ho-Jin Choi | Jeong Heo | Pum-Mo Ryu
Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing

2006

pdf bib
Compiling large language resources using lexical similarity metrics for domain taxonomy learning
Ronny Melz | Pum-Mo Ryu | Key-Sun Choi
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

In this contribution we present a new methodology to compile large language resources for domain-specific taxonomy learning. We describe the necessary stages to deal with the rich morphology of an agglutinative language, i.e. Korean, and point out a second order machine learning algorithm to unveil term similarity from a given raw text corpus. The language resource compilation described is part of a fully automatic top-down approach to construct taxonomies, without involving the human efforts which are usually required.

pdf bib
Taxonomy Learning using Term Specificity and Similarity
Pum-Mo Ryu | Key-Sun Choi
Proceedings of the 2nd Workshop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge

2004

pdf bib
Determining the Specificity of Terms using Compositional and Contextual Information
Pum-Mo Ryu
Proceedings of the ACL Student Research Workshop

pdf bib
Determining the Specificity of Terms based on Information Theoretic Measures
Pum-Mo Ryu | Key-Sun Choi
Proceedings of CompuTerm 2004: 3rd International Workshop on Computational Terminology