This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
PreronaTarannum
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This study investigates the application of Transformer-based models for violence threat identification. We participated in the BLP-2023 Shared Task 1 and in our initial submission, BanglaBERT large achieved 5th position on the leader-board with a macro F1 score of 0.7441, approaching the highest baseline of 0.7879 established for this task. In contrast, the top-performing system on the leaderboard achieved an F1 score of 0.7604. Subsequent experiments involving m-BERT, XLM-RoBERTa base, XLM-RoBERTa large, BanglishBERT, BanglaBERT, and BanglaBERT large models revealed that BanglaBERT achieved an F1 score of 0.7441, which closely approximated the baseline. Remarkably, m-BERT and XLM-RoBERTa base also approximated the baseline with macro F1 scores of 0.6584 and 0.6968, respectively. A notable finding from our study is the under-performance by larger models for the shared task dataset, which requires further investigation. Our findings underscore the potential of transformer-based models in identifying violence threats, offering valuable insights to enhance safety measures on online platforms.
Sentiment analysis (SA) is a crucial task in natural language processing, especially in contexts with a variety of linguistic features, like Bangla. We participated in BLP-2023 Shared Task 2 on SA of Bangla text. We investigated the performance of six transformer-based models for SA in Bangla on the shared task dataset. We fine-tuned these models and conducted a comprehensive performance evaluation. We ranked 20th on the leaderboard of the shared task with a blind submission that used BanglaBERT Small. BanglaBERT outperformed other models with 71.33% accuracy, and the closest model was BanglaBERT Large, with an accuracy of 70.90%. BanglaBERT consistently outperformed others, demonstrating the benefits of models developed using sizable datasets in Bangla.
In this study, we report our participation in Task 2 of the BLP-2023 shared task. The main objective of this task is to determine the sentiment (Positive, Neutral, or Negative) of a given text. We first removed the URLs, hashtags, and other noises and then applied traditional and pretrained language models. We submitted multiple systems in the leaderboard and BanglaBERT with tokenized data provided thebest result and we ranked 5th position in the competition with an F1-micro score of 71.64. Our study also reports that the importance of tokenization is lessening in the realm of pretrained language models. In further experiments, our evaluation shows that BanglaBERT outperforms, and predicting the neutral class is still challenging for all the models.