Prakhar Saxena


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Static and Dynamic Speaker Modeling based on Graph Neural Network for Emotion Recognition in Conversation
Prakhar Saxena | Yin Jou Huang | Sadao Kurohashi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Each person has a unique personality which affects how they feel and convey emotions. Hence, speaker modeling is important for the task of emotion recognition in conversation (ERC). In this paper, we propose a novel graph-based ERC model which considers both conversational context and speaker personality. We model the internal state of the speaker (personality) as Static and Dynamic speaker state, where the Dynamic speaker state is modeled with a graph neural network based encoder. Experiments on benchmark dataset shows the effectiveness of our model. Our model outperforms baseline and other graph-based methods. Analysis of results also show the importance of explicit speaker modeling.