Pooneh Mousavi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Detecting Hashtag Hijacking for Hashtag Activism
Pooneh Mousavi | Jessica Ouyang
Proceedings of the 1st Workshop on NLP for Positive Impact

Social media has changed the way we engage in social activities. On Twitter, users can participate in social movements using hashtags such as #MeToo; this is known as hashtag activism. However, while these hashtags can help reshape social norms, they can also be used maliciously by spammers or troll communities for other purposes, such as signal boosting unrelated content, making a dent in a movement, or sharing hate speech. We present a Tweet-level hashtag hijacking detection framework focusing on hashtag activism. Our weakly-supervised framework uses bootstrapping to update itself as new Tweets are posted. Our experiments show that the system adapts to new topics in a social movement, as well as new hijacking strategies, maintaining strong performance over time.