This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
PiotrŻelasko
Also published as:
Piotr Zelasko
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an “expert” of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset’s tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-3.5-Sonnet with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
Recent studies have augmented large language models (LLMs) with speech capabilities, leading to the development of speech language models (SpeechLMs). Earlier SpeechLMs focused on single-turn speech-based question answering (QA), where user input comprised a speech context and a text question. More recent studies have extended this to multi-turn conversations, though they often require complex, multi-stage supervised fine-tuning (SFT) with diverse data. Another critical challenge with SpeechLMs is catastrophic forgetting, where models optimized for speech tasks suffer significant degradation in text-only performance. To mitigate these issues, we propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the LLM backbone. Our joint SFT combines text-only SFT data with three types of speech-related data: speech recognition and translation, speech-based QA, and mixed-modal SFT. Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks while preserving the original capabilities on text-only tasks. Furthermore, our model shows emergent abilities of effectively handling previously unseen prompts and tasks, including multi-turn, mixed-modal inputs.
Transcripts of spontaneous human speech present a significant obstacle for traditional NER models. The lack of grammatical structure of spoken utterances and word errors introduced by the ASR make downstream NLP tasks challenging. In this paper, we examine in detail the complex relationship between ASR and NER errors which limit the ability of NER models to recover entity mentions from spontaneous speech transcripts. Using publicly available benchmark datasets (SWNE, Earnings-21, OntoNotes), we present the full taxonomy of ASR-NER errors and measure their true impact on entity recognition. We find that NER models fail spectacularly even if no word errors are introduced by the ASR. We also show why the F1 score is inadequate to evaluate NER models on conversational transcripts.
Dialog acts can be interpreted as the atomic units of a conversation, more fine-grained than utterances, characterized by a specific communicative function. The ability to structure a conversational transcript as a sequence of dialog acts—dialog act recognition, including the segmentation—is critical for understanding dialog. We apply two pre-trained transformer models, XLNet and Longformer, to this task in English and achieve strong results on Switchboard Dialog Act and Meeting Recorder Dialog Act corpora with dialog act segmentation error rates (DSER) of 8.4% and 14.2%. To understand the key factors affecting dialog act recognition, we perform a comparative analysis of models trained under different conditions. We find that the inclusion of a broader conversational context helps disambiguate many dialog act classes, especially those infrequent in the training data. The presence of punctuation in the transcripts has a massive effect on the models’ performance, and a detailed analysis reveals specific segmentation patterns observed in its absence. Finally, we find that the label set specificity does not affect dialog act segmentation performance. These findings have significant practical implications for spoken language understanding applications that depend heavily on a good-quality segmentation being available.
Natural language processing of conversational speech requires the availability of high-quality transcripts. In this paper, we express our skepticism towards the recent reports of very low Word Error Rates (WERs) achieved by modern Automatic Speech Recognition (ASR) systems on benchmark datasets. We outline several problems with popular benchmarks and compare three state-of-the-art commercial ASR systems on an internal dataset of real-life spontaneous human conversations and HUB’05 public benchmark. We show that WERs are significantly higher than the best reported results. We formulate a set of guidelines which may aid in the creation of real-life, multi-domain datasets with high quality annotations for training and testing of robust ASR systems.