Pinyun Fu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Leveraging Contrastive Learning and Knowledge Distillation for Incomplete Modality Rumor Detection
Fan Xu | Pinyun Fu | Qi Huang | Bowei Zou | AiTi Aw | Mingwen Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

Rumors spread rapidly through online social microblogs at a relatively low cost, causing substantial economic losses and negative consequences in our daily lives. Existing rumor detection models often neglect the underlying semantic coherence between text and image components in multimodal posts, as well as the challenges posed by incomplete modalities in single modal posts, such as missing text or images. This paper presents CLKD-IMRD, a novel framework for Incomplete Modality Rumor Detection. CLKD-IMRD employs Contrastive Learning and Knowledge Distillation to capture the semantic consistency between text and image pairs, while also enhancing model generalization to incomplete modalities within individual posts. Extensive experimental results demonstrate that our CLKD-IMRD outperforms state-of-the-art methods on two English and two Chinese benchmark datasets for rumor detection in social media.