Pierre Gotab


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2009

pdf bib
Apprentissage automatique et Co-training
Pierre Gotab
Actes de la 16ème conférence sur le Traitement Automatique des Langues Naturelles. REncontres jeunes Chercheurs en Informatique pour le Traitement Automatique des Langues

Dans le domaine de la classification supervisée et semi-supervisée, cet article présente un contexte favorable à l’application de méthodes statistiques de classification. Il montre l’application d’une stratégie alternative dans le cas où les données d’apprentissage sont insuffisantes, mais où de nombreuses données non étiquetées sont à notre disposition : le cotraining multi-classifieurs. Les deux vues indépendantes habituelles du co-training sont remplacées par deux classifieurs basés sur des techniques de classification différentes : icsiboost sur le boosting et LIBLINEAR sur de la régression logistique.