Phudish Prateepamornkul


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Lifelong Knowledge Editing requires Better Regularization
Akshat Gupta | Phudish Prateepamornkul | Maochuan Lu | Ahmed Alaa | Thomas Hartvigsen | Gopala Anumanchipalli
Findings of the Association for Computational Linguistics: EMNLP 2025

Knowledge editing is a promising way to improve factuality in large language models, but recent studies have shown significant model degradation during sequential editing. In this paper, we formalize the popular locate-then-edit methods as a two-step fine-tuning process, allowing us to precisely identify the root cause of this degradation. We show that model degradation occurs due to (1) over-optimization of internal activations and (2) continuous norm-growth of edited matrices. To mitigate these issues, we introduce two regularization techniques: (1) Most-Probable Early Stopping (MPES) and (2) explicit Frobenius norm-constraint. We demonstrate that applying these simple yet effective regularization techniques at key points in the editing process can substantially mitigate model degradation. Combining these regularization methods enables scaling locate-then-edit methods to 10,000 edits while reducing editing time by 42-61%. These results show that targeted regularization is essential for lifelong knowledge editing.