Philippe Cudré-Mauroux


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
SECTOR: A Neural Model for Coherent Topic Segmentation and Classification
Sebastian Arnold | Rudolf Schneider | Philippe Cudré-Mauroux | Felix A. Gers | Alexander Löser
Transactions of the Association for Computational Linguistics, Volume 7

When searching for information, a human reader first glances over a document, spots relevant sections, and then focuses on a few sentences for resolving her intention. However, the high variance of document structure complicates the identification of the salient topic of a given section at a glance. To tackle this challenge, we present SECTOR, a model to support machine reading systems by segmenting documents into coherent sections and assigning topic labels to each section. Our deep neural network architecture learns a latent topic embedding over the course of a document. This can be leveraged to classify local topics from plain text and segment a document at topic shifts. In addition, we contribute WikiSection, a publicly available data set with 242k labeled sections in English and German from two distinct domains: diseases and cities. From our extensive evaluation of 20 architectures, we report a highest score of 71.6% F1 for the segmentation and classification of 30 topics from the English city domain, scored by our SECTOR long short-term memory model with Bloom filter embeddings and bidirectional segmentation. This is a significant improvement of 29.5 points F1 over state-of-the-art CNN classifiers with baseline segmentation.

2018

pdf bib
Sanaphor++: Combining Deep Neural Networks with Semantics for Coreference Resolution
Julien Plu | Roman Prokofyev | Alberto Tonon | Philippe Cudré-Mauroux | Djellel Eddine Difallah | Raphaël Troncy | Giuseppe Rizzo
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)