This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
PhilippSadler
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Interaction between learner and feedback-giver has come into focus recently for post-training of Large Language Models (LLMs), through the use of reward models that judge the appropriateness of a model’s response. In this paper, we investigate whether Dialogue Games—goal-directed and rule-governed activities driven predominantly by verbal actions—can also serve as a source of feedback signals for learning.We introduce Playpen, an environment for off- and online learning through Dialogue Game self-play, and investigate a representative set of post-training methods: supervised fine-tuning; direct alignment (DPO); and reinforcement learning with Group Relative Policy Optimization (GRPO). We experiment with post-training a small LLM (Llama-3.1-8B-Instruct), evaluating performance on unseen instances of training games as well as unseen games, and on standard benchmarks. We find that imitation learning through SFT improves performance on unseen instances, but negatively impacts other skills, while interactive learning with GRPO shows balanced improvements without loss of skills. We release the framework and the baseline training setups to foster research in this promising new direction of “learning in (synthetic) interaction”.
This work analyses the text memorization behavior of large language models (LLMs) when subjected to nucleus sampling. Stochastic decoding methods like nucleus sampling are typically applied to overcome issues such as monotonous and repetitive text generation, which are often observed with maximization-based decoding techniques. We hypothesize that nucleus sampling might also reduce the occurrence of memorization patterns, because it could lead to the selection of tokens outside the memorized sequence. To test this hypothesis we create a diagnostic dataset with a known distribution of duplicates that gives us some control over the likelihood of memorisation of certain parts of the training data. Our analysis of two GPT-Neo models fine-tuned on this dataset interestingly shows that (i) an increase of the nucleus size reduces memorization only modestly, and (ii) even when models do not engage in “hard” memorization – a verbatim reproduction of training samples – they may still display “soft” memorization whereby they generate outputs that echo the training data but without a complete one-by-one resemblance.
In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players’ assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement—which invites further research in the direction of cost-sharing in collaborative interactions.
In this work, we evaluate the adaptability of neural agents towards assumed partner behaviors in a collaborative reference game. In this game, success is achieved when a knowledgeable guide can verbally lead a follower to the selection of a specific puzzle piece among several distractors. We frame this language grounding and coordination task as a reinforcement learning problem and measure to which extent a common reinforcement training algorithm (PPO) is able to produce neural agents (the guides) that perform well with various heuristic follower behaviors that vary along the dimensions of confidence and autonomy. We experiment with a learning signal that in addition to the goal condition also respects an assumed communicative effort. Our results indicate that this novel ingredient leads to communicative strategies that are less verbose (staying silent in some of the steps) and that with respect to that the guide’s strategies indeed adapt to the partner’s level of confidence and autonomy.
NLP tasks are typically defined extensionally through datasets containing example instantiations (e.g., pairs of image _i_ and text _t_), but motivated intensionally through capabilities invoked in verbal descriptions of the task (e.g., “_t_ is a description of _i_, for which the content of _i_ needs to be recognised and understood”).We present Pento-DIARef, a diagnostic dataset in a visual domain of puzzle pieces where referring expressions are generated by a well-known symbolic algorithm (the “Incremental Algorithm”),which itself is motivated by appeal to a hypothesised capability (eliminating distractors through application of Gricean maxims). Our question then is whether the extensional description (the dataset) is sufficient for a neural model to pick up the underlying regularity and exhibit this capability given the simple task definition of producing expressions from visual inputs. We find that a model supported by a vision detection step and a targeted data generation scheme achieves an almost perfect BLEU@1 score and sentence accuracy, whereas simpler baselines do not.
Recent work has proposed a methodology for the systematic evaluation of “Situated Language Understanding Agents” — agents that operate in rich linguistic and non-linguistic contexts — through testing them in carefully constructed interactive settings. Other recent work has argued that Large Language Models (LLMs), if suitably set up, can be understood as (simulators of) such agents. A connection suggests itself, which this paper explores: Can LLMs be evaluated meaningfully by exposing them to constrained game-like settings that are built to challenge specific capabilities? As a proof of concept, this paper investigates five interaction settings, showing that current chat-optimised LLMs are, to an extent, capable of following game-play instructions. Both this capability and the quality of the game play, measured by how well the objectives of the different games are met, follows the development cycle, with newer models generally performing better. The metrics even for the comparatively simple example games are far from being saturated, suggesting that the proposed instrument will remain to have diagnostic value.
The ability to pick up on language signals in an ongoing interaction is crucial for future machine learning models to collaborate and interact with humans naturally. In this paper, we present an initial study that evaluates intra-episodic feedback given in a collaborative setting. We use a referential language game as a controllable example of a task-oriented collaborative joint activity. A teacher utters a referring expression generated by a well-known symbolic algorithm (the “Incremental Algorithm”) as an initial instruction and then monitors the follower’s actions to possibly intervene with intra-episodic feedback (which does not explicitly have to be requested). We frame this task as a reinforcement learning problem with sparse rewards and learn a follower policy for a heuristic teacher. Our results show that intra-episodic feedback allows the follower to generalize on aspects of scene complexity and performs better than providing only the initial statement.
While certain types of instructions can be com-pactly expressed via images, there are situations where one might want to verbalise them, for example when directing someone. We investigate the task of Instruction Generation from Before/After Image Pairs which is to derive from images an instruction for effecting the implied change. For this, we make use of prior work on instruction following in a visual environment. We take an existing dataset, the BLOCKS data collected by Bisk et al. (2016) and investigate whether it is suitable for training an instruction generator as well. We find that it is, and investigate several simple baselines, taking these from the related task of image captioning. Through a series of experiments that simplify the task (by making image processing easier or completely side-stepping it; and by creating template-based targeted instructions), we investigate areas for improvement. We find that captioning models get some way towards solving the task, but have some difficulty with it, and future improvements must lie in the way the change is detected in the instruction.
Learned dynamic weighting of the conditioning signal (attention) has been shown to improve neural language generation in a variety of settings. The weights applied when generating a particular output sequence have also been viewed as providing a potentially explanatory insight in the internal workings of the generator. In this paper, we reverse the direction of this connection and ask whether through the control of the attention of the model we can control its output. Specifically, we take a standard neural image captioning model that uses attention, and fix the attention to predetermined areas in the image. We evaluate whether the resulting output is more likely to mention the class of the object in that area than the normally generated caption. We introduce three effective methods to control the attention and find that these are producing expected results in up to 27.43% of the cases.