Philipp Meier


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
SMARAGD: Learning SMatch for Accurate and Rapid Approximate Graph Distance
Juri Opitz | Philipp Meier | Anette Frank
Proceedings of the 15th International Conference on Computational Semantics

The similarity of graph structures, such as Meaning Representations (MRs), is often assessed via structural matching algorithms, such as Smatch (Cai & Knight 2013). However, Smatch involves a combinatorial problem that suffers from NP-completeness, making large-scale applications, e.g., graph clustering or search, infeasible. To alleviate this issue, we learn SMARAGD: Semantic Match for Accurate and Rapid Approximate Graph Distance. We show the potential of neural networks to approximate Smatch scores, i) in linear time using a machine translation framework to predict alignments, or ii) in constant time using a Siamese CNN to directly predict Smatch scores. We show that the approximation error can be substantially reduced through data augmentation and graph anonymization.