This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Pheng-AnnHeng
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The rapid advancement of Large Multi-modal Models (LMMs) has enabled their application in scientific problem-solving, yet their fine-grained capabilities remain under-explored. In this paper, we introduce SciVerse, a multi-modal scientific evaluation benchmark to thoroughly assess LMMs across 5,735 test instances in five distinct versions. We aim to investigate three key dimensions of LMMs: scientific knowledge comprehension, multi-modal content interpretation, and Chain-of-Thought (CoT) reasoning. To unveil whether LMMs possess sufficient scientific expertise, we first transform each problem into three versions containing different levels of knowledge required for solving, i.e., Knowledge-free, -lite, and -rich. Then, to explore how LMMs interpret multi-modal scientific content, we annotate another two versions, i.e., Vision-rich and -only, marking more question information from texts to diagrams. Comparing the results of different versions, SciVerse systematically examines the professional knowledge stock and visual perception skills of LMMs in scientific domains. In addition, to rigorously assess CoT reasoning, we propose a new scientific CoT evaluation strategy, conducting a step-wise assessment on knowledge and logical errors in model outputs. Our extensive evaluation of different LMMs on SciVerse reveals critical limitations in their scientific proficiency and provides new insights into future developments. Project page: https://sciverse-cuhk.github.io
Large Language Models (LLMs) have exhibited remarkable performance across various natural language processing tasks. However, deploying LLMs on resource-limited settings remains a challenge. While early-exit techniques offer an effective approach, they often require compromised training methods that result in sub-optimal performance. On the other hand, multi-model methods achieve improved results but suffer from significant inference latency and memory consumption. In this paper, we propose LoRAExit, a novel dynamic inference architecture that leverages low-rank adaptors for efficient deployment of LLMs. LoRAExit decouples the training of multiple exit interfaces, enabling the separate optimization of each exit, thereby fundamentally addressing the performance issues of early-exit networks. Moreover, we introduce a superior-exit guided distillation method that effectively utilizes models of different sizes, thereby further enhancing the performance of early exits. Experimental results demonstrate that LoRAExit significantly improves LLM performance when deployed on resource-limited settings.
While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs’ generalization ability are not fully understood.This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets.Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model’s generalization ability.Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.