This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Petervan der Putten
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
To what degree should we ascribe cognitive capacities to Large Language Models (LLMs), such as the ability to reason about intentions and beliefs known as Theory of Mind (ToM)? Here we add to this emerging debate by (i) testing 11 base- and instruction-tuned LLMs on capabilities relevant to ToM beyond the dominant false-belief paradigm, including non-literal language usage and recursive intentionality; (ii) using newly rewritten versions of standardized tests to gauge LLMs’ robustness; (iii) prompting and scoring for open besides closed questions; and (iv) benchmarking LLM performance against that of children aged 7-10 on the same tasks. We find that instruction-tuned LLMs from the GPT family outperform other models, and often also children. Base-LLMs are mostly unable to solve ToM tasks, even with specialized prompting. We suggest that the interlinked evolution and development of language and ToM may help explain what instruction-tuning adds: rewarding cooperative communication that takes into account interlocutor and context. We conclude by arguing for a nuanced perspective on ToM in LLMs.
Sign language lexica are a useful resource for researchers and people learning sign languages. Current implementations allow a user to search a sign either by its gloss or by selecting its primary features such as handshape and location. This study focuses on exploring a reverse search functionality where a user can sign a query sign in front of a webcam and retrieve a set of matching signs. By extracting different body joints combinations (upper body, dominant hand’s arm and wrist) using the pose estimation framework OpenPose, we compare four techniques (PCA, UMAP, DTW and Euclidean distance) as distance metrics between 20 query signs, each performed by eight participants on a 1200 sign lexicon. The results show that UMAP and DTW can predict a matching sign with an 80% and 71% accuracy respectively at the top-20 retrieved signs using the movement of the dominant hand arm. Using DTW and adding more sign instances from other participants in the lexicon, the accuracy can be raised to 90% at the top-10 ranking. Our results suggest that our methodology can be used with no training in any sign language lexicon regardless of its size.
This study presents a new methodology to search sign language lexica, using a full sign as input for a query. Thus, a dictionary user can look up information about a sign by signing the sign to a webcam. The recorded sign is then compared to potential matching signs in the lexicon. As such, it provides a new way of searching sign language dictionaries to complement existing methods based on (spoken language) glosses or phonological features, like handshape or location. The method utilizes OpenPose to extract the body and finger joint positions. Dynamic Time Warping (DTW) is used to quantify the variation of the trajectory of the dominant hand and the average trajectories of the fingers. Ten people with various degrees of sign language proficiency have participated in this study. Each subject viewed a set of 20 signs from the newly compiled Ghanaian sign language lexicon and was asked to replicate the signs. The results show that DTW can predict the matching sign with 87% and 74% accuracy at the Top-10 and Top-5 ranking level respectively by using only the trajectory of the dominant hand. Additionally, more proficient signers obtain 90% accuracy at the Top-10 ranking. The methodology has the potential to be used also as a variation measurement tool to quantify the difference in signing between different signers or sign languages in general.