This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
PenghuiWei
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In subjective natural language generation tasks, generating diverse perspectives is essential for fostering balanced discourse and mitigating bias. Argument generation with diverse perspectives plays a vital role in advancing the understanding of controversial claims. Despite the strong generative capabilities of large language models (LLMs), the diversity of perspectives remains insufficiently explored within argument generation task. Moreover, there remains a significant research gap in developing methods that explicitly generate multi-perspective arguments under the quality control of claim-stance alignment constraints. In this paper, we propose POEM, a Perspective-aware Preference Optimization with Entropy Maximization framework for diverse argument generation. It enhances perspective diversity through preference optimization based on the constructed preference dataset via perspective mining and diversity measuring. It further introduces entropy maximization to promote perspective diversity by encouraging dispersed semantic representations among the generated arguments. Experimental results on claim-stance argument generation benchmarks show that POEM is capable of generating diverse arguments while maintaining comparable performances in claim and stance controllability as well as text quality compared to the state-of-the-art baselines and human evaluation.
Stance detection aims to identify the attitudes toward specific targets from text, which is an important research area in text mining and social media analytics. Existing research is mainly conducted in monolingual setting on English datasets. To tackle the data scarcity problem in low-resource languages, cross-lingual stance detection (CLSD) transfers the knowledge from high-resource (source) language to low-resource (target) language. The CLSD task is the most challenging in zero-shot setting when no training data is available in target language, and transferring stance-relevant knowledge learned from high-resource language to bridge the language gap is the key for improving the performance of zero-shot CLSD. In this paper, we leverage the capability of large language model (LLM) for stance knowledge acquisition, and propose KEAR, a knowledge elicitation and retrieval framework. The knowledge elicitation module in KEAR first derives different types of stance knowledge from LLM’s reasoning process. Then, the knowledge retrieval module in KEAR matches the target language input to the most relevant stance knowledge for enhancing text representations. Experiments on multilingual datasets show the effectiveness of KEAR compared with competitive baselines as well as the CLSD approaches trained with labeled data in target language.
This paper focuses on automatically generating the text of an ad, and the goal is that the generated text can capture user interest for achieving higher click-through rate (CTR). We propose CREATER, a CTR-driven advertising text generation approach, to generate ad texts based on high-quality user reviews. To incorporate CTR objective, our model learns from online A/B test data with contrastive learning, which encourages the model to generate ad texts that obtain higher CTR. To make use of large-scale unpaired reviews, we design a customized self-supervised objective reducing the gap between pre-training and fine-tuning. Experiments on industrial datasets show that CREATER significantly outperforms current approaches. It has been deployed online in a leading advertising platform and brings uplift on core online metrics.
Emotion-cause pair extraction aims to extract all emotion clauses coupled with their cause clauses from a given document. Previous work employs two-step approaches, in which the first step extracts emotion clauses and cause clauses separately, and the second step trains a classifier to filter out negative pairs. However, such pipeline-style system for emotion-cause pair extraction is suboptimal because it suffers from error propagation and the two steps may not adapt to each other well. In this paper, we tackle emotion-cause pair extraction from a ranking perspective, i.e., ranking clause pair candidates in a document, and propose a one-step neural approach which emphasizes inter-clause modeling to perform end-to-end extraction. It models the interrelations between the clauses in a document to learn clause representations with graph attention, and enhances clause pair representations with kernel-based relative position embedding for effective ranking. Experimental results show that our approach significantly outperforms the current two-step systems, especially in the condition of extracting multiple pairs in one document.
Automatically verifying rumorous information has become an important and challenging task in natural language processing and social media analytics. Previous studies reveal that people’s stances towards rumorous messages can provide indicative clues for identifying the veracity of rumors, and thus determining the stances of public reactions is a crucial preceding step for rumor veracity prediction. In this paper, we propose a hierarchical multi-task learning framework for jointly predicting rumor stance and veracity on Twitter, which consists of two components. The bottom component of our framework classifies the stances of tweets in a conversation discussing a rumor via modeling the structural property based on a novel graph convolutional network. The top component predicts the rumor veracity by exploiting the temporal dynamics of stance evolution. Experimental results on two benchmark datasets show that our method outperforms previous methods in both rumor stance classification and veracity prediction.