PeiJun Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SafeEraser: Enhancing Safety in Multimodal Large Language Models through Multimodal Machine Unlearning
Junkai Chen | Zhijie Deng | Kening Zheng | Yibo Yan | Shuliang Liu | PeiJun Wu | Peijie Jiang | Jia Liu | Xuming Hu
Findings of the Association for Computational Linguistics: ACL 2025

As Multimodal Large Language Models (MLLMs) develop, their potential security issues have become increasingly prominent. **Machine Unlearning (MU)**, as an effective strategy for forgetting specific knowledge in training data, has been widely used in privacy protection. However, *MU for safety in MLLM has yet to be fully explored*. To address this issue, we propose , a safety unlearning benchmark for MLLMs, consisting of 3,000 images and 28.8K VQA pairs. We comprehensively evaluate unlearning methods from two perspectives: **_forget quality_** and **_model utility_**. Our findings show that existing MU methods struggle to maintain model performance while implementing the forget operation and often suffer from **_over-forgetting_**. Hence, we introduce **Prompt Decouple (PD) Loss** to alleviate over-forgetting through decouple prompt during unlearning process. To quantitatively measure over-forgetting mitigated by PD Loss, we propose a new metric called **Safe Answer Refusal Rate (SARR)**. Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting and achieve a decrease of 79.5% in the SARR metric of LLaVA-7B and LLaVA-13B, while maintaining forget quality and model utility. Our code and dataset will be released upon acceptance. **Warning: This paper contains examples of harmful language and images, and reader discretion is recommended.**