This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
PavanKandru
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper describes our system (iREL) for Tweet intimacy analysis sharedtask of the SemEval 2023 workshop at ACL 2023. Oursystem achieved an overall Pearson’s r score of 0.5924 and ranked 10th on the overall leaderboard. For the unseen languages, we ranked third on the leaderboard and achieved a Pearson’s r score of 0.485. We used a single multilingual model for all languages, as discussed in this paper. We provide a detailed description of our pipeline along with multiple ablation experiments to further analyse each component of the pipeline. We demonstrate how translation-based augmentation, domain-specific features, and domain-adapted pre-trained models improve the understanding of intimacy in tweets. The codecan be found at \href{https://github.com/bhavyajeet/Multilingual-tweet-intimacy}{https://github.com/bhavyajeet/Multilingual-tweet-intimacy}
Identifying human values behind arguments isa complex task which requires understandingof premise, stance and conclusion together. Wepropose a method that uses a pre-trained lan-guage model, DeBERTa, to tokenize and con-catenate the text before feeding it into a fullyconnected neural network. We also show thatleveraging the hierarchy in values improves theperformance by .14 F1 score.
This paper describes our system used in the SemEval-2023 Task 11 Learning With Disagreements (Le-Wi-Di). This is a subjective task since it deals with detecting hate speech, misogyny and offensive language. Thus, disagreement among annotators is expected. We experiment with different settings like loss functions specific for subjective tasks and include anonymized annotator-specific information to help us understand the level of disagreement. We perform an in-depth analysis of the performance discrepancy of these different modelling choices. Our system achieves a cross-entropy of 0.58, 4.01 and 3.70 on the test sets of HS-Brexit, ArMIS and MD-Agreement, respectively. Our code implementation is publicly available.