Pauline Möhle


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Just Collect, Don’t Filter: Noisy Labels Do Not Improve Counterspeech Collection for Languages Without Annotated Resources
Pauline Möhle | Matthias Orlikowski | Philipp Cimiano
Proceedings of the 1st Workshop on CounterSpeech for Online Abuse (CS4OA)

Counterspeech on social media is rare. Consequently, it is difficult to collect naturally occurring examples, in particular for languages without annotated datasets. In this work, we study methods to increase the relevance of social media samples for counterspeech annotation when we lack annotated resources. We use the example of sourcing German data for counterspeech annotations from Twitter. We monitor tweets from German politicians and activists to collect replies. To select relevant replies we a) find replies that match German abusive keywords or b) label replies for counterspeech using a multilingual classifier fine-tuned on English data. For both approaches and a baseline setting, we annotate a random sample and use bootstrap sampling to estimate the amount of counterspeech. We find that neither the multilingual model nor the keyword approach achieve significantly higher counts of true counterspeech than the baseline. Thus, keyword lists or multi-lingual classifiers are likely not worth the added complexity beyond purposive data collection: Already without additional filtering, we gather a meaningful sample with 7,4% true counterspeech.