Patrick Klein


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Improving Neural Knowledge Base Completion with Cross-Lingual Projections
Patrick Klein | Simone Paolo Ponzetto | Goran Glavaš
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

In this paper we present a cross-lingual extension of a neural tensor network model for knowledge base completion. We exploit multilingual synsets from BabelNet to translate English triples to other languages and then augment the reference knowledge base with cross-lingual triples. We project monolingual embeddings of different languages to a shared multilingual space and use them for network initialization (i.e., as initial concept embeddings). We then train the network with triples from the cross-lingually augmented knowledge base. Results on WordNet link prediction show that leveraging cross-lingual information yields significant gains over exploiting only monolingual triples.