Patrick Darwinkel


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Groningen Group E at SemEval-2024 Task 8: Detecting machine-generated texts through pre-trained language models augmented with explicit linguistic-stylistic features
Patrick Darwinkel | Sijbren Van Vaals | Marieke Van Der Holt | Jarno Van Houten
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Our approach to detecting machine-generated text for the SemEval-2024 Task 8 combines a wide range of linguistic-stylistic features with pre-trained language models (PLM). Experiments using random forests and PLMs resulted in an augmented DistilBERT system for subtask A and B and an augmented Longformer for subtask C. These systems achieved accuracies of 0.63 and 0.77 for the mono- and multilingual tracks of subtask A, 0.64 for subtask B and a MAE of 26.07 for subtask C. Although lower than the task organizer’s baselines, we demonstrate that linguistic-stylistic features are predictors for whether a text was authored by a model (and if so, which one).