Patrick Cormac English


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Domain-Informed Probing of wav2vec 2.0 Embeddings for Phonetic Features
Patrick Cormac English | John D. Kelleher | Julie Carson-Berndsen
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

In recent years large transformer model architectures have become available which provide a novel means of generating high-quality vector representations of speech audio. These transformers make use of an attention mechanism to generate representations enhanced with contextual and positional information from the input sequence. Previous works have explored the capabilities of these models with regard to performance in tasks such as speech recognition and speaker verification, but there has not been a significant inquiry as to the manner in which the contextual information provided by the transformer architecture impacts the representation of phonetic information within these models. In this paper, we report the results of a number of probing experiments on the representations generated by the wav2vec 2.0 model’s transformer component, with regard to the encoding of phonetic categorization information within the generated embeddings. We find that the contextual information generated by the transformer’s operation results in enhanced capture of phonetic detail by the model, and allows for distinctions to emerge in acoustic data that are otherwise difficult to separate.