Pasin Manurangsi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Large-Scale Differentially Private BERT
Rohan Anil | Badih Ghazi | Vineet Gupta | Ravi Kumar | Pasin Manurangsi
Findings of the Association for Computational Linguistics: EMNLP 2022

In this work, we study the large-scale pretraining of BERT-Large (Devlin et al., 2019) with differentially private SGD (DP-SGD). We show that combined with a careful implementation, scaling up the batch size to millions (i.e., mega-batches) improves the utility of the DP-SGD step for BERT; we also enhance the training efficiency by using an increasing batch size schedule. Our implementation builds on the recent work of Subramani et al (2020), who demonstrated that the overhead of a DP-SGD step is minimized with effective use of JAX (Bradbury et al., 2018; Frostig et al., 2018) primitives in conjunction with the XLA compiler (XLA team and collaborators, 2017). Our implementation achieves a masked language model accuracy of 60.5% at a batch size of 2M, for epsilon=5, which is a reasonable privacy setting. To put this number in perspective, non-private BERT models achieve an accuracy of ∼70%.