This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ParsaGhaffari
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Interactive storytelling benefits from planning and exploring multiple “what if” scenarios. Modern LLMs are useful tools for ideation and exploration, but current chat-based user interfaces restrict users to a single linear flow. To address this limitation, we propose Narrative Studio – a novel in-browser narrative exploration environment featuring a tree-like interface that allows branching exploration from user-defined points in a story. Each branch is extended via iterative LLM inference guided by system and user-defined prompts. Additionally, we employ Monte Carlo Tree Search (MCTS) to automatically expand promising narrative paths based on user-specified criteria, enabling more diverse and robust story development. We also allow users to enhance narrative coherence by grounding the generated text in a graph that represents the actors and environment of the story.
We present STAGE, a straightforward yet effective method for enhancing node features in Graph Neural Network (GNN) models that encode Text-Attributed Graphs (TAGs). Our approach leverages Large-Language Models (LLMs) to generate embeddings for textual attributes. STAGE achieves competitive results on various node classification benchmarks while also maintaining a simplicity in implementation relative to current state-of-the-art (SoTA) techniques. We show that utilizing pre-trained LLMs as embedding generators provides robust features for ensemble GNN training, enabling pipelines that are simpler than current SoTA approaches which require multiple expensive training and prompting stages. We also implement diffusion-pattern GNNs in an effort to make this pipeline scalable to graphs beyond academic benchmarks.
We present an open-source Python library for building and using datasets where inputs are clusters of textual data, and outputs are sequences of real values representing one or more timeseries signals. The news-signals library supports diverse data science and NLP problem settings related to the prediction of time series behaviour using textual data feeds. For example, in the news domain, inputs are document clusters corresponding to daily news articles about a particular entity, and targets are explicitly associated real-valued timeseries: the volume of news about a particular person or company, or the number of pageviews of specific Wikimedia pages. Despite many industry and research usecases for this class of problem settings, to the best of our knowledge, News Signals is the only open-source library designed specifically to facilitate data science and research settings with natural language inputs and timeseries targets. In addition to the core codebase for building and interacting with datasets, we also conduct a suite of experiments using several popular Machine Learning libraries, which are used to establish baselines for timeseries anomaly prediction using textual inputs.
The proliferation of fake news and filter bubbles makes it increasingly difficult to form an unbiased, balanced opinion towards a topic. To ameliorate this, we propose 360° Stance Detection, a tool that aggregates news with multiple perspectives on a topic. It presents them on a spectrum ranging from support to opposition, enabling the user to base their opinion on multiple pieces of diverse evidence.