This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ParinthapatPengpun
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present a synthetic data approach for instruction-tuning large language models (LLMs) for low-resource languages in a data-efficient manner, specifically focusing on Thai. We identify three key properties that contribute to the effectiveness of instruction-tuning datasets: fluency, diversity, and cultural context. We propose a seed-data-free framework for generating synthetic instruction-tuning data that incorporates these essential properties. Our framework employs an LLM to generate diverse topics, retrieve relevant contexts from Wikipedia, and create instructions for various tasks, such as question answering, summarization, and conversation. The experimental results show that our best-performing synthetic dataset, which incorporates all three key properties, achieves competitive performance using only 5,000 instructions when compared to state-of-the-art Thai LLMs trained on hundreds of thousands of instructions. Our code and dataset are publicly available at https://github.com/parinzee/seed-free-synthetic-instruct.
Radiology report generation (RRG) aims to create free-text radiology reports from clinical imaging. Our solution employs a lightweight multimodal language model (MLLM) enhanced with a two-stage post-processing strategy, utilizing a Large Language Model (LLM) to boost diagnostic accuracy and ensure patient safety. We introduce the “First, Do No Harm” SafetyNet, which incorporates Xraydar, an advanced X-ray classification model, to cross-verify the model outputs and specifically address false negatives from the MLLM. This comprehensive approach combines the efficiency of lightweight models with the robustness of thorough post-processing techniques, offering a reliable solution for radiology report generation. Our system achieved fourth place on the F1-Radgraph metric for findings generation in the Radiology Report Generation Shared Task (RRG24).
Machine translation (MT) in the medical domain plays a pivotal role in enhancing healthcare quality and disseminating medical knowledge. Despite advancements in English-Thai MT technology, common MT approaches often underperform in the medical field due to their inability to precisely translate medical terminologies. Our research prioritizes not merely improving translation accuracy but also maintaining medical terminology in English within the translated text through code-switched (CS) translation. We developed a method to produce CS medical translation data, fine-tuned a CS translation model with this data, and evaluated its performance against strong baselines, such as Google Neural Machine Translation (NMT) and GPT-3.5/GPT-4. Our model demonstrated competitive performance in automatic metrics and was highly favored in human preference evaluations. Our evaluation result also shows that medical professionals significantly prefer CS translations that maintain critical English terms accurately, even if it slightly compromises fluency. Our code and test set are publicly available https://github.com/preceptorai-org/NLLB_CS_EM_NLP2024.
This paper presents an innovative data augmentation framework with data quality control designed to enhance the robustness of Question Answering (QA) models in low-resource languages, particularly Thai. Recognizing the challenges posed by the scarcity and quality of training data, we leverage data augmentation techniques in both monolingual and cross-lingual settings. Our approach augments and enriches the original dataset, thereby increasing its linguistic diversity and robustness. We evaluate the robustness of our framework on Machine Reading Comprehension, and the experimental results illustrate the potential of data augmentation to effectively increase training data and improve model generalization in low-resource language settings, offering a promising direction for the data augmentation manner.