Pangbo Ban


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Testing Pre-trained Language Models’ Understanding of Distributivity via Causal Mediation Analysis
Pangbo Ban | Yifan Jiang | Tianran Liu | Shane Steinert-Threlkeld
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

To what extent do pre-trained language models grasp semantic knowledge regarding the phenomenon of distributivity? In this paper, we introduce DistNLI, a new diagnostic dataset for natural language inference that targets the semantic difference arising from distributivity, and employ the causal mediation analysis framework to quantify the model behavior and explore the underlying mechanism in this semantically-related task. We find that the extent of models’ understanding is associated with model size and vocabulary size. We also provide insights into how models encode such high-level semantic knowledge.