Panagiotis Filos


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Towards a Greek Proverb Atlas: Computational Spatial Exploration and Attribution of Greek Proverbs
John Pavlopoulos | Panos Louridas | Panagiotis Filos
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Proverbs carry wisdom transferred orally from generation to generation. Based on the place they were recorded, this study introduces a publicly-available and machine-actionable dataset of more than one hundred thousand Greek proverb variants. By quantifying the spatial distribution of proverbs, we show that the most widespread proverbs come from the mainland while the least widespread proverbs come primarily from the islands. By focusing on the least dispersed proverbs, we present the most frequent tokens per location and undertake a benchmark in geographical attribution, using text classification and regression (text geocoding). Our results show that this is a challenging task for which specific locations can be attributed more successfully compared to others. The potential of our resource and benchmark is showcased by two novel applications. First, we extracted terms moving the regression prediction toward the four cardinal directions. Second, we leveraged conformal prediction to attribute 3,676 unregistered proverbs with statistically rigorous predictions of locations each of these proverbs was possibly registered in.