Paloma Rabaey


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Frozen Pretrained Transformers for Neural Sign Language Translation
Mathieu De Coster | Karel D’Oosterlinck | Marija Pizurica | Paloma Rabaey | Severine Verlinden | Mieke Van Herreweghe | Joni Dambre
Proceedings of the 1st International Workshop on Automatic Translation for Signed and Spoken Languages (AT4SSL)

One of the major challenges in sign language translation from a sign language to a spoken language is the lack of parallel corpora. Recent works have achieved promising results on the RWTH-PHOENIX-Weather 2014T dataset, which consists of over eight thousand parallel sentences between German sign language and German. However, from the perspective of neural machine translation, this is still a tiny dataset. To improve the performance of models trained on small datasets, transfer learning can be used. While this has been previously applied in sign language translation for feature extraction, to the best of our knowledge, pretrained language models have not yet been investigated. We use pretrained BERT-base and mBART-50 models to initialize our sign language video to spoken language text translation model. To mitigate overfitting, we apply the frozen pretrained transformer technique: we freeze the majority of parameters during training. Using a pretrained BERT model, we outperform a baseline trained from scratch by 1 to 2 BLEU-4. Our results show that pretrained language models can be used to improve sign language translation performance and that the self-attention patterns in BERT transfer in zero-shot to the encoder and decoder of sign language translation models.