Pablo Botton Costa


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
BERTabaporu: Assessing a Genre-Specific Language Model for Portuguese NLP
Pablo Botton Costa | Matheus Camasmie Pavan | Wesley Ramos Santos | Samuel Caetano Silva | Ivandré Paraboni
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Transformer-based language models such as Bidirectional Encoder Representations from Transformers (BERT) are now mainstream in the NLP field, but extensions to languages other than English, to new domains and/or to more specific text genres are still in demand. In this paper we introduced BERTabaporu, a BERT language model that has been pre-trained on Twitter data in the Brazilian Portuguese language. The model is shown to outperform the best-known general-purpose model for this language in three Twitter-related NLP tasks, making a potentially useful resource for Portuguese NLP in general.