P. Jayashree


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Evaluation of Deep Gaussian Processes for Text Classification
P. Jayashree | P. K. Srijith
Proceedings of the Twelfth Language Resources and Evaluation Conference

With the tremendous success of deep learning models on computer vision tasks, there are various emerging works on the Natural Language Processing (NLP) task of Text Classification using parametric models. However, it constrains the expressability limit of the function and demands enormous empirical efforts to come up with a robust model architecture. Also, the huge parameters involved in the model causes over-fitting when dealing with small datasets. Deep Gaussian Processes (DGP) offer a Bayesian non-parametric modelling framework with strong function compositionality, and helps in overcoming these limitations. In this paper, we propose DGP models for the task of Text Classification and an empirical comparison of the performance of shallow and Deep Gaussian Process models is made. Extensive experimentation is performed on the benchmark Text Classification datasets such as TREC (Text REtrieval Conference), SST (Stanford Sentiment Treebank), MR (Movie Reviews), R8 (Reuters-8), which demonstrate the effectiveness of DGP models.