This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ÖzgeSevgili
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper presents the Sövereign submission for the shared task on perspective argument retrieval for the Argument Mining Workshop 2024. The main challenge is to perform argument retrieval considering socio-cultural aspects such as political interests, occupation, age, and gender. To address the challenge, we apply open-access Large Language Models (Mistral-7b) in a zero-shot fashion for re-ranking and explicit similarity scoring. Additionally, we combine different features in an ensemble setup using logistic regression. Our system ranks second in the competition for all test set rounds on average for the logistic regression approach using LLM similarity scores as a feature. In addition to the description of the approach, we also provide further results of our ablation study. Our code will be open-sourced upon acceptance.
This paper presents UHH’s approach developed for the AVeriTeC shared task. The goal of the challenge is to verify given real-world claims with evidences from the Web. In this shared task, we investigate a Retrieval-Augmented Generation (RAG) model, which mainly contains retrieval, generation, and augmentation components. We start with the selection of the top 10k evidences via BM25 scores, and continue with two approaches to retrieve the most similar evidences: (1) to retrieve top 10 evidences through vector similarity, generate questions for them, and rerank them or (2) to generate questions for the claim and retrieve the most similar evidence, again, through vector similarity. After retrieving the top evidences, a Large Language Model (LLM) is prompted using the claim along with either all evidences or individual evidence to predict the label. Our system submission, UHH, using the first approach and individual evidence prompts, ranks 6th out of 23 systems.
Entity Disambiguation (ED) is the task of linking an ambiguous entity mention to a corresponding entry in a knowledge base. Current methods have mostly focused on unstructured text data to learn representations of entities, however, there is structured information in the knowledge base itself that should be useful to disambiguate entities. In this work, we propose a method that uses graph embeddings for integrating structured information from the knowledge base with unstructured information from text-based representations. Our experiments confirm that graph embeddings trained on a graph of hyperlinks between Wikipedia articles improve the performances of simple feed-forward neural ED model and a state-of-the-art neural ED system.
This paper presents a system developed for SemEval-2017 Task 7, Detection and Interpretation of English Puns consisting of three subtasks; pun detection, pun location, and pun interpretation, respectively. The system stands on recognizing a distinctive word which has a high association with the pun in the given sentence. The intended humorous meaning of pun is identified through the use of this word. Our official results confirm the potential of this approach.