Ozan Polatbilek


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
A Turkish Dataset for Gender Identification of Twitter Users
Erhan Sezerer | Ozan Polatbilek | Selma Tekir
Proceedings of the 13th Linguistic Annotation Workshop

Author profiling is the identification of an author’s gender, age, and language from his/her texts. With the increasing trend of using Twitter as a means to express thought, profiling the gender of an author from his/her tweets has become a challenge. Although several datasets in different languages have been released on this problem, there is still a need for multilingualism. In this work, we propose a dataset of tweets of Turkish Twitter users which are labeled with their gender information. The dataset has 3368 users in training set and 1924 users in test set where each user has 100 tweets. The dataset is publicly available.