Oussama Kandakji
Fixing paper assignments
- Please select all papers that belong to the same person.
- Indicate below which author they should be assigned to.
TODO: "submit" and "cancel" buttons here
2020
TOMODAPI: A Topic Modeling API to Train, Use and Compare Topic Models
Pasquale Lisena
|
Ismail Harrando
|
Oussama Kandakji
|
Raphael Troncy
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)
From LDA to neural models, different topic modeling approaches have been proposed in the literature. However, their suitability and performance is not easy to compare, particularly when the algorithms are being used in the wild on heterogeneous datasets. In this paper, we introduce ToModAPI (TOpic MOdeling API), a wrapper library to easily train, evaluate and infer using different topic modeling algorithms through a unified interface. The library is extensible and can be used in Python environments or through a Web API.