Ouaras Rafik


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
dzStance at StanceEval2024: Arabic Stance Detection based on Sentence Transformers
Mohamed Lichouri | Khaled Lounnas | Ouaras Rafik | Mohamed ABi | Anis Guechtouli
Proceedings of the Second Arabic Natural Language Processing Conference

This study compares Term Frequency-Inverse Document Frequency (TF-IDF) features with Sentence Transformers for detecting writers’ stances—favorable, opposing, or neutral—towards three significant topics: COVID-19 vaccine, digital transformation, and women empowerment. Through empirical evaluation, we demonstrate that Sentence Transformers outperform TF-IDF features across various experimental setups. Our team, dzStance, participated in a stance detection competition, achieving the 13th position (74.91%) among 15 teams in Women Empowerment, 10th (73.43%) in COVID Vaccine, and 12th (66.97%) in Digital Transformation. Overall, our team’s performance ranked 13th (71.77%) among all participants. Notably, our approach achieved promising F1-scores, highlighting its effectiveness in identifying writers’ stances on diverse topics. These results underscore the potential of Sentence Transformers to enhance stance detection models for addressing critical societal issues.