Òscar Garibo i Orts


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter at SemEval-2019 Task 5: Frequency Analysis Interpolation for Hate in Speech Detection
Òscar Garibo i Orts
Proceedings of the 13th International Workshop on Semantic Evaluation

This document describes a text change of representation approach to the task of Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter, as part of SemEval-2019 1 . The task is divided in two sub-tasks. Sub-task A consists in classifying tweets as being hateful or not hateful, whereas sub-task B requires fine tuning the classification by classifying the hateful tweets as being directed to single individuals or generic, if the tweet is aggressive or not. Our approach consists of a change of the space of representation of text into statistical descriptors which characterize the text. In addition, dimensional reduction is performed to 6 characteristics per class in order to make the method suitable for a Big Data environment. Frequency Analysis Interpolation (FAI) is the approach we use to achieve rank 5th in Spanish language and 9th in English language in sub-task B in both cases.
Search
Co-authors
    Venues
    Fix data