Orest Xherija


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
CompLx@SMM4H’22: In-domain pretrained language models for detection of adverse drug reaction mentions in English tweets
Orest Xherija | Hojoon Choi
Proceedings of the Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

The paper describes the system that team CompLx developed for sub-task 1a of the Social Media Mining for Health 2022 (#SMM4H) Shared Task. We finetune a RoBERTa model, a pretrained, transformer-based language model, on a provided dataset to classify English tweets for mentions of Adverse Drug Reactions (ADRs), i.e. negative side effects related to medication intake. With only a simple finetuning, our approach achieves competitive results, significantly outperforming the average score across submitted systems. We make the model checkpoints and code publicly available. We also create a web application to provide a user-friendly, readily accessible interface for anyone interested in exploring the model’s capabilities.

2018

pdf bib
Classification of Medication-Related Tweets Using Stacked Bidirectional LSTMs with Context-Aware Attention
Orest Xherija
Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task

This paper describes the system that team UChicagoCompLx developed for the 2018 Social Media Mining for Health Applications (SMM4H) Shared Task. We use a variant of the Message-level Sentiment Analysis (MSA) model of (Baziotis et al., 2017), a word-level stacked bidirectional Long Short-Term Memory (LSTM) network equipped with attention, to classify medication-related tweets in the four subtasks of the SMM4H Shared Task. Without any subtask-specific tuning, the model is able to achieve competitive results across all subtasks. We make the datasets, model weights, and code publicly available.