Omer Bobrowski


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Unsupervised Geometric and Topological Approaches for Cross-Lingual Sentence Representation and Comparison
Shaked Haim Meirom | Omer Bobrowski
Proceedings of the 7th Workshop on Representation Learning for NLP

We propose novel structural-based approaches for the generation and comparison of cross lingual sentence representations. We do so by applying geometric and topological methods to analyze the structure of sentences, as captured by their word embeddings. The key properties of our methods are”:” (a) They are designed to be isometric invariant, in order to provide language-agnostic representations. (b) They are fully unsupervised, and use no cross-lingual signal. The quality of our representations, and their preservation across languages, are evaluated in similarity comparison tasks, achieving competitive results. Furthermore, we show that our structural-based representations can be combined with existing methods for improved results.