Omar Mohamed Awad


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ECHO-LLaMA: Efficient Caching for High-Performance LLaMA Training
Maryam Dialameh | Rezaul Karim | Hossein Rajabzadeh | Omar Mohamed Awad | Boxing Chen | Hyock Ju Kwon | Walid Ahmed | Yang Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

This paper introduces ECHO-LLaMA, an efficient LLaMA architecture designed to improve both the training speed and inference throughput of LLaMA architectures while maintaining its learning capacity. ECHO-LLaMA transforms LLaMA models into shared KV caching across certain layers, significantly reducing KV computational complexity while maintaining or improving language performance. Experimental results demonstrate that ECHO-LLaMA achieves up to 77% higher token-per-second throughput during training, up to 16% higher Model FLOPs Utilization (MFU), and up to 14% lower loss when trained on an equal number of tokens. Furthermore, on the 1.1B model, ECHO-LLaMA delivers approximately 7% higher test-time throughput compared to the baseline. By introducing a computationally efficient adaptation mechanism, ECHO-LLaMA offers a scalable and cost-effective solution for pretraining and finetuning large language models, enabling faster and more resource-efficient training without compromising performance.