Om Dehlan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LRPLAN: A Multi-Agent Collaboration of Large Language and Reasoning Models for Planning with Implicit & Explicit Constraints
T Karthikeyan | Om Dehlan | Mausam | Manish Gupta
Findings of the Association for Computational Linguistics: EMNLP 2025

Our goal is to build language model based multi-agent systems for complex planning problems involving multiple explicit and implicit constraints, some of which may be commonsense. Our initial investigations reveal that large language models (LLMs) are often unable to maintain consistency across the planning process, whereas large reasoning models (LRMs) struggle with handling implicit commonsense constraints. In response, we introduce LRPlan, a novel domain-independent, language-based multi-agent architecture where LLM and LRM-based agents collaborate at training time to abstract important patterns, heuristics and insights about the domain. At test time, they collaborate in implementing these learned patterns and insights for a new planning instance. We perform experiments on two datasets, TravelPlanner and TimeArena-Static, and use two LLM-LRM combinations from GPT and DeepSeek families. We find that LRPlan outperforms various multi-agent and single-agent baselines obtaining notably higher accuracy as well as cost efficiency. We make the code publiclyavailable.