Oluwatobi Abiola


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Predicting Emotion Intensity in Text Using Transformer-Based Models
Temitope Oladepo | Oluwatobi Abiola | Tolulope Abiola | Abdullah - | Usman Muhammad | Babatunde Abiola
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

Emotion intensity prediction in text enhances conversational AI by enabling a deeper understanding of nuanced human emotions, a crucial yet underexplored aspect of natural language processing (NLP). This study employs Transformer-based models to classify emotion intensity levels (0–3) for five emotions: anger, fear, joy, sadness, and surprise. The dataset, sourced from the SemEval shared task, was preprocessed to address class imbalance, and model training was performed using fine-tuned *bert-base-uncased*. Evaluation metrics showed that *sadness* achieved the highest accuracy (0.8017) and F1-macro (0.5916), while *fear* had the lowest accuracy (0.5690) despite a competitive F1-macro (0.5207). The results demonstrate the potential of Transformer-based models in emotion intensity prediction while highlighting the need for further improvements in class balancing and contextual representation.