This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
OllieLiu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Multimodal information extraction (MIE) is crucial for scientific literature, where valuable data is often spread across text, figures, and tables. In materials science, extracting structured information from research articles can accelerate the discovery of new materials. However, the multimodal nature and complex interconnections of scientific content present challenges for traditional text-based methods. We introduce MatViX, a benchmark consisting of 324 full-length research articles and 1,688 complex structured JSON files, carefully curated by domain experts in polymer nanocomposites and biodegradation. These JSON files are extracted from text, tables, and figures in full-length documents, providing a comprehensive challenge for MIE. We introduce a novel evaluation method to assess the accuracy of curve similarity and the alignment of hierarchical structures. Additionally, we benchmark vision-language models (VLMs) in a zero-shot manner, capable of processing long contexts and multimodal inputs. Our results demonstrate significant room for improvement in current models.
Augmenting a language model (LM) with k-nearest neighbors (kNN) retrieval on its training data alone can decrease its perplexity, though the underlying reasons for this remain elusive. In this work, we rule out one previously posited possibility — the “softmax bottleneck.” We then create a new dataset to evaluate LM generalization ability in the setting where training data contains additional information that is not causally relevant. This task is challenging even for GPT-3.5 Turbo. We show that, for both GPT-2 and Mistral 7B, kNN retrieval augmentation consistently improves per formance in this setting. Finally, to make kNN retrieval more accessible, we propose using amulti-layer perceptron model that maps datastore keys to values as a drop-in replacement for traditional retrieval. This reduces storage costsby over 25x.
We investigate the ability of transformer models to approximate the CKY algorithm, using them to directly predict a sentence’s parse and thus avoid the CKY algorithm’s cubic dependence on sentence length. We find that on standard constituency parsing benchmarks this approach achieves competitive or better performance than comparable parsers that make use of CKY, while being faster. We also evaluate the viability of this approach for parsing under random PCFGs. Here we find that performance declines as the grammar becomes more ambiguous, suggesting that the transformer is not fully capturing the CKY computation. However, we also find that incorporating additional inductive bias is helpful, and we propose a novel approach that makes use of gradients with respect to chart representations in predicting the parse, in analogy with the CKY algorithm being a subgradient of a partition function variant with respect to the chart.