This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
OlivieroStock
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Musical parody, i.e. the act of changing the lyrics of an existing and very well-known song, is a commonly used technique for creating catchy advertising tunes and for mocking people or events. Here we describe a system for automatically producing a musical parody, starting from a corpus of songs. The system can automatically identify characterizing words and concepts related to a novel text, which are taken from the daily news. These concepts are then used as seeds to appropriately replace part of the original lyrics of a song, using metrical, rhyming and lexical constraints. Finally, the parody can be sung with a singing speech synthesizer, with no intervention from the user.
In computation linguistics a combination of syntagmatic and paradigmatic features is often exploited. While the first aspects are typically managed by information present in large n-gram databases, domain and ontological aspects are more properly modeled by lexical ontologies such as WordNet and semantic similarity spaces. This interconnection is even stricter when we are dealing with creative language phenomena, such as metaphors, prototypical properties, puns generation, hyperbolae and other rhetorical phenomena. This paper describes a way to focus on and accomplish some of these tasks by exploiting NgramQuery, a generalized query language on Google N-gram database. The expressiveness of this query language is boosted by plugging semantic similarity acquired both from corpora (e.g. LSA) and from WordNet, also integrating operators for phonetics and sentiment analysis. The paper reports a number of examples of usage in some creative language tasks.
Evaluating systems and theories about persuasion represents a bottleneck for both theoretical and applied fields: experiments are usually expensive and time consuming. Still, measuring the persuasive impact of a message is of paramount importance. In this paper we present a new ``cheap and fast'' methodology for measuring the persuasiveness of communication. This methodology allows conducting experiments with thousands of subjects for a few dollars in a few hours, by tweaking and using existing commercial tools for advertising on the web, such as Google AdWords. The central idea is to use AdWords features for defining message persuasiveness metrics. Along with a description of our approach we provide some pilot experiments, conducted both with text and image based ads, that confirm the effectiveness of our ideas. We also discuss the possible application of research on persuasive systems to Google AdWords in order to add more flexibility in the wearing out of persuasive messages.
In political speeches, the audience tends to react or resonate to signals of persuasive communication, including an expected theme, a name or an expression. Automatically predicting the impact of such discourses is a challenging task. In fact nowadays, with the huge amount of textual material that flows on the Web (news, discourses, blogs, etc.), it can be useful to have a measure for testing the persuasiveness of what we retrieve or possibly of what we want to publish on Web. In this paper we exploit a corpus of political discourses collected from various Web sources, tagged with audience reactions, such as applause, as indicators of persuasive expressions. In particular, we use this data set in a machine learning framework to explore the possibility of classifying the transcript of political discourses, according to their persuasive power, predicting the sentences that possibly trigger applause. We also explore differences between Democratic and Republican speeches, experiment the resulting classifiers in grading some of the discourses in the Obama-McCain presidential campaign available on the Web.
This paper presents resources and strategies for persuasive natural language processing. After the introduction of a specifically tagged corpus, some techniques for affective language processing and for persuasive lexicon extraction are provided together with prospective scenarios of application.
In this paper a first implementation of a tool for valence shifting of natural language texts, named Valentino (VALENced Text INOculator), is presented. Valentino can modify existing textual expressions towards more positively or negatively valenced versions. To this end we built specific resources gathering various valenced terms that are semantically or contextually connected, and implemented strategies that uses these resources for substituting input terms.
This paper presents resources and functionalities for the recognition and selection of affective evaluative terms. An affective hierarchy as an extension of the WordNet-Affect lexical database was developed in the first place. The second phase was the development of a semantic similarity function, acquired automatically in an unsupervised way from a large corpus of texts, which allows us to put into relation concepts and emotional categories. The integration of the two components is a key element for several applications.