Oleh Shkalikov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Revisiting Projection-based Data Transfer for Cross-Lingual Named Entity Recognition in Low-Resource Languages
Andrei Politov | Oleh Shkalikov | Rene Jäkel | Michael Färber
Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)

Cross-lingual Named Entity Recognition (NER) leverages knowledge transfer between languages to identify and classify named entities, making it particularly useful for low-resource languages. We show that the data-based cross-lingual transfer method is an effective technique for cross-lingual NER and can outperform multi-lingual language models for low-resource languages. This paper introduces two key enhancements to the annotation projection step in cross-lingual NER for low-resource languages. First, we explore refining word alignments using back-translation to improve accuracy. Second, we present a novel formalized projection approach of matching source entities with extracted target candidates. Through extensive experiments on two datasets spanning 57 languages, we demonstrated that our approach surpasses existing projection-based methods in low-resource settings. These findings highlight the robustness of projection-based data transfer as an alternative to model-based methods for cross-lingual named entity recognition in low-resource languages.