Oisín Boydell


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Topic Stability over Noisy Sources
Jing Su | Derek Greene | Oisín Boydell
Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)

Topic modelling techniques such as LDA have recently been applied to speech transcripts and OCR output. These corpora may contain noisy or erroneous texts which may undermine topic stability. Therefore, it is important to know how well a topic modelling algorithm will perform when applied to noisy data. In this paper we show that different types of textual noise can have diverse effects on the stability of topic models. On the other hand, topic model stability is not consistent with the same type but different levels of noise. We introduce a dictionary filtering approach to address this challenge, with the result that a topic model with the correct number of topics is always identified across different levels of noise.