Oguzhan Gencoglu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Sentence Transformers and Bayesian Optimization for Adverse Drug Effect Detection from Twitter
Oguzhan Gencoglu
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task

This paper describes our approach for detecting adverse drug effect mentions on Twitter as part of the Social Media Mining for Health Applications (SMM4H) 2020, Shared Task 2. Our approach utilizes multilingual sentence embeddings (sentence-BERT) for representing tweets and Bayesian hyperparameter optimization of sample weighting parameter for counterbalancing high class imbalance.
Search
Co-authors
    Venues
    Fix data