Ochilbek Rakhmanov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Sentiment Analysis for Hausa: Classifying Students’ Comments
Ochilbek Rakhmanov | Tim Schlippe
Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

We describe our work on sentiment analysis for Hausa, where we investigated monolingual and cross-lingual approaches to classify student comments in course evaluations. Furthermore, we propose a novel stemming algorithm to improve accuracy. For studies in this area, we collected a corpus of more than 40,000 comments—the Hausa-English Sentiment Analysis Corpus For Educational Environments (HESAC). Our results demonstrate that the monolingual approaches for Hausa sentiment analysis slightly outperform the cross-lingual systems. Using our stemming algorithm in the pre-processing even improved the best model resulting in 97.4% accuracy on HESAC.