Nur Alya Dania Binti Moriazi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
KHU_LDI at BioLaySumm2025: Fine-tuning and Refinement for Lay Radiology Report Generation
Nur Alya Dania Binti Moriazi | Mujeen Sung
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

Though access to one’s own radiology reports has improved over the years, the use of complex medical terms makes understanding these reports difficult. To tackle this issue, we explored two approaches: supervised fine-tuning open-source large language models using QLoRA, and refinement, which improves a given generated output using feedback generated by a feedback model. Despite the fine-tuned model outperforming refinement on the test data, refinement showed good results on the validation set, thus showing good potential in the generation of lay radiology reports. Our submission achieved 2nd place in the open track of Subtask 2.1 of the BioLaySumm 2025 shared task.